Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance
نویسندگان
چکیده
Multi-walled carbon nanotubes (MWCNTs) with systematically varied diameter distributions and defect densities were reproducibly grown from a modified catalyst structure templated in an amine-terminated fourth-generation poly(amidoamine) (PAMAM) dendrimer by microwave plasma-enhanced chemical vapor deposition. Thermal interface resistances of the vertically oriented MWCNT arrays as determined by a photoacoustic technique reveal a strong correlation with the quality as assessed by Raman spectroscopy. This study contributes not only to the development of an active catalyst via a wet chemical route for structure-controlled MWCNT growth, but also to the development of efficient and low-cost MWCNT-based thermal interface materials with thermal interface resistances 10 mm2 K W−1.
منابع مشابه
Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown under Direct Current Bias Voltage
The electrical resistance of individual multiwalled carbon nanotubes and the thermal interface resistance of nanotube arrays are investigated as functions of dc bias voltage used during growth. Nanotubes were grown from Fe2O3 nanoparticles supported on Ti/SiO2/Si substrates by microwave plasma chemical vapor deposition (MPCVD) under dc bias voltages of -200, -100, 0, +100, and +200 V. Electrica...
متن کاملDendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition.
Using a shielded growth approach and N2-annealed, nearly monodispersed Fe2O3 nanoparticles synthesized by interdendritic stabilization of Fe3+ species within fourth-generation poly(amidoamine) dendrimers, carbon nanotubes and nanofibers were successfully grown at low substrate temperatures (200-400 degrees C) by microwave plasma-enhanced chemical vapor deposition.
متن کاملAfrl-rx-wp-ja-2016-0297 Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon- Fiber/matrix Interface (postprint)
The rapid heating of carbon-fiber-reinforced polymer matrix composites leads to complex thermophysical interactions which not only are dependent on the thermal properties of the constituents and microstructure but are also dependent on the thermal transport between the fiber and resin interfaces. Using atomistic molecular dynamics simulations, the thermal conductance across the interface betwee...
متن کاملEnhancement of thermal interface materials with carbon nanotube arrays
This paper describes an experimental study of thermal contact conductance enhancement enabled by carbon nanotube (CNT) arrays synthesized directly on silicon wafers using plasma-enhanced chemical vapor deposition. Testing based on the one-dimensional reference bar method occurred in a high-vacuum environment with radiation shielding, and temperature measurements were made with an infrared camer...
متن کاملMolecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.
Using molecular dynamics simulations with Tersoff reactive many-body potential for Si-Si, Si-C, and C-C interactions, we have calculated the thermal conductance at the interfaces between carbon nanotube (CNT) and silicon at different applied pressures. The interfaces are formed by axially compressing and indenting capped or uncapped CNTs against 2 x 1 reconstructed Si surfaces. The results show...
متن کامل